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In this study, perturbation theory has been used for the first time in literature to do small-signal analysis and solution of the 
memristor-based low-pass and high-pass filters are given using perturbation theory. The time and frequency domain 
memristor-based filter behaviors are obtained analytically. It has been found that the second harmonic does exist and is 
dominant and its behavior as a function of frequency is inspected in these filters. The gain responses and the total harmonic 
distortions of the filters are also given. Results obtained from the perturbation theory are in good agreement with that of 
numerical simulations and this confirms the accuracy and the performance of the method. 
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1. Introduction 
 

Memristor had been claimed as a fundamental and 

nonlinear circuit element in 1971 and  was declared to be 

found, almost four decades later, in 2008 [1, 2]. Memristor 

is a passive nonlinear circuit element and has interesting 

properties which cannot be mimicked by the other linear 

fundamental circuit elements such as resistor, inductor and 

capacitor [1]. It has a charge dependent resis tance called 

memristance and has a zero-crossing pinched hysteresis 

loop when excited with an AC signal source. Due to these 

unusual properties, its feasibility for not only digital but 

also analog circuit applications are currently being 

investigated. There are already some studies on analog 

circuit applications of memristors in the [3–17] and some 

of them are about memristor-based analog filters [18–24]. 

Memristor is a nonlinear circuit element and therefore 

memristor-based low-pass (LP) and high-pass (HP) filters, 

made of a capacitor and a memristor connected in series, 

are also nonlinear circuits. Due to this nonlinearity, the 

equations describing memristor-capacitor (M-C) filters 

cannot be solved analytically. To the best of our 

knowledge, there is neither an exact nor an approximate 

analytical solution of the memristor-based LP and HP 

filters exist in the literature. 

In this paper, using linear drift TiO2 memristor model, 

small-signal analysis of both memristor-based low-pass 

and high-pass filters are done. 

Since it is not possible to find exact solution of the 

differential equation describing the filter circuits, 

perturbation method, which is often used in quantum 

physics to find approximate solutions of the problems 

which cannot be solved exactly [25–28] is used for their 

small-signal analysis in steady-state for the first time in 

literature. Perturbation model simulation results are 

compared to that of dynamic model simulations and it is 

shown that the perturbation model gives  accurate results 

and able to predict current, voltage and hysteresis loops of 

the filters well. It is also shown that the harmonics do exist 

and the second harmonic is the dominant one. THD 

behavior of the memristor-based LP and HP filters are also 

examined in this study. 

This paper is arranged as follows. In the second 

section, the linear dopant drift TiO2 memristor model is 

given. In the third section, the memristor-based LP and HP 

filters are introduced and the dynamic models of the 

memristor-based low-pass and high-pass filters are 

presented. In the fourth section, the small signal analyses 

of both of the filters are done using the perturbation 

theory. In the fifth section, simulation results are given. 

Current, voltage, memristance and charge waveforms, 

hysteresis loops, gain and THD responses of the filters are 

obtained and compared by using simulations results of 

both small signal and dynamic models of the memristor-

based filters. Paper is finished with conclusion. 

 

 

2. TiO2 linear drift modeling of memristor 
 

A memristor is defined as either flux or charge 

controlled [1]. The instantaneous memristor charge is 

equal to the integration of its current with respect to time 

and given as 

    
t

q t i d 


   (1) 

The terminal equation of the charge-controlled 

memristor is given as 

 

      v t M q i t  (2) 
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In this work, the charge dependent TiO2 linear drift model 

of memristor given in [2] is used. Based on the linear 

dopant drift model, the memristor’s charge-dependent 

resistance or memristance is given as 

    
2

1 V ON
OFF

d R
M q R q t

dq D

  
   

 
 (3) 

Where D is the length of the memristive device, µ is 

mobility of dopants, RON and ROFF are low and high state 

resistances, respectively. For the simplicity we will use (4) 

defining memristance function in this study: 

 

    0 qM q M K q t   (4) 

Where M0=ROFF is the maximum memristance and Kq is 

the charge coefficient. Memristor charge can take values 

from 0 to qsat for the memristor model given in [2]. 

Memristance is equal to M0 if the memristor is saturated at 

q=0. If the memristor is saturated at the maximum 

memristor charge, q=qsat, its memristance becomes 

minimum and is equal to  

 0sat q satM M K q                             (5) 

If the memristor is not saturated; 

  0 satM M q M                          (6) 

 
3. Dynamic models of memristor-based low  

    pass and high pass filters 
 

3.1. The memristor-based low-pass and high-pass  

       filters 

 

Traditional R-C low-pass and high-pass filters are 

shown in  

Fig. 1 (a) and (c), respectively. By replacing the linear 

resistor with a memristor, the memristor-based LP and HP 

filters are obtained as illustrated in  

Fig. 1 (b) and (d) respectively. Both of the filters have 

adjustable gain and cut-off frequency characteristic due to 

the fact that memristor memristance can change as a 

function of memristor charge. 
 

 
 

(a) (b) 

  
(c) (d) 

 

Fig. 1. (a), (c) RC low-pass and high-pass filters, respectively. 

(b), (d) memristor-based (MC) low-pass and high-pass filters, 

respectively 

3.2. Dynamic model of memristor based low pass  

      and high pass filters 

 

Memristance of a memristor is a nonlinear function. 

Assuming there is no saturation in the memristor-based LP 

and HP filters, their state-space representations are same 

and it is given as 

 

 
  0

Mem i C i C
Mem

q Mem

dq v v v v
i

dt M q M K q

 
  


 (7) 

 
 

1C Mem i C
C

dv i v v
i

dt C C M q C


    (8) 

Assuming the input voltage is sinusoidal, (7) and (8) 

can be combined as  

 

    0sini m q Mem Mem Cv V t M K q i v     (9) 

 

The memristor current is also equal to the capacitor 

current: 

 Mem C
Mem

dq dq
i

dt dt
   (10) 

 

By taking the integration of (10), 

 

 ( ) ( )C Memq t q t A   (11) 

 

A is the integration constant and equal to 

 

 (0) (0)C MemA q q   (12) 

 

Then, (9)turns into 

 

    sin Mem C
m

dq q
V t M q

dt C
    (13) 

    sin Mem Mem
m

dq q A
V t M q

dt C



   (14) 

 

4. Analysis of memristor based low-pass and  
    high-pass filters based on the perturbation  

    theory 
 

4.1. Small signal analysis of memristor based low  

       pass and high pass filters with perturbation  

       theory 

 

(14) describes the behavior of both of the filters. An 

exact analytical solution for the memristor charge, qMem, in 

time or frequency domain cannot be obtained. Since (14) 

is not analytically solvable, the perturbation method is 

used to find an approximate solution for it. 

The memristor charge is taken to be equal to 

 

 Memq q q q    (15) 

Where q  is the average memristor charge and q is the 

memristor charge perturbation or the charge ripple. Then, 

the memristance is equal to 

C

R
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-
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Cvi
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vovC
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vMem+ -

R

C

vi

-

+ +

-

vo M

C

vi

-

+ +

-

vovMem

vC+ -

+

-



Small signal analysis of memristor-based low-pass and high-pass filters using the perturbation theory                     57 

 
   

 

 0 0( ) q q q qM q M K q M K q K q M K q        (16) 

where M is the average memristance for one electrical 

period. Then, (9) turns into 

 

 

   

 

0in q q

q

dq q A
v t M K q K q

dt C

dq q q A
M K q

dt C C


   


   

 (17) 

    sinin m q

dq dq q q A
v t V t M K q

dt dt C C



      (18) 

 

A small parameter is needed for being able to solve (18) 

using Perturbation method. The following arrangements 

are done for this purpose. By dividing each side of (18) by 

M : 

 
 sin qm

KV t dq q dq q A
q

M dt MC M dt MC

 
     (19) 

 

And by multiplying each side of (19) by C :  

 

 
 sin qm

K CCV t dq q dq q A
C q

M dt M M dt M

 
     (20) 

 

ε is assumed to be a small parameter and is equal to 

 

 
qK C

M
   (21) 

(20) can be rearranged as 

 

 
 sin

.
mCV t dq q dq q A

C q
M dt M dt M





     (22) 

 

Then, the solution of the memristor charge ripple can 

be assumed as 

 
       

   

2

0 1 2

3

3 ... n

n

q t q t q t q t

q t q t

 

 

  

  
 (23) 

Where q0(t) is the zero
th

 order solution, q1(t) is the first 

order solution, and so on. If the zero
th

 order solution, q0(t), 

is seeked for, it is assumed that ε= 0. Then, (22) turns into 

 

 
  0 0

sinmCV t dq q q A
C

M dt M M

 
    (24) 

 

The zero
th

 order solution is  

 

  
  

 
0

2

sin arctan

1

t
m

MC
CV t MC

q t Be q A

MC

 



 
   



 (25) 

Since we are interested in AC periodic steady-state 

solution, the homogenous solution part of (25) is not dealt 

with anymore. The average value of the input voltage is  

 

    sin 0m Mem Cv t V t v v     (26) 

This requires that these follows also must be true in 

steady state:  

 0C
C

q q A
v

C C


    (27) 

and 

 0Mem

d
v

dt


  . (28) 

Therefore, the average value of the memristor charge 

ripple is 

 0q   (29) 

 

The average value of the capacitor charge is  

 

 0Cq q A    (30) 

 

Therefore, A is equal to q .Also, when the transient 

dies, in the periodic steady-state, the transient term, 
t

MCBe


must disappear. Then, 

 

  
  

 
0

2

sin arctan

1

mCV t MC
q t

MC

 








 (31) 

It is interesting to note that this is also same as the steady-

state solution of an R-C series circuit whose resistance is 

equal to M . If the first order solution, q1(t), is sought for, 

it should be assumed that ε is a small number not being 

equal to zero but its higher powers are negligible; ε
2
 = ε

3
 = 

… = ε
n
 = 0 and the total solution of the memristor charge 

ripple is equal to the sum of the zero
th

 solution and ε times 

the first order solution: 

 

      0 1q t q t q t   (32) 

 

And submitting (32) into (22): 

 

 

 
 

  

0 1
0 1

0 1 0 1

sinmCV t q q
C q q

M M

q A
q q q q

M

 


  

  

   

 (33) 

By rearranging (33): 

 

 

 

 

0
0

21
1 0 0 0 1 0 1 1 1

sin

0

mCV t q q A
Cq

M M M

q
Cq q q q q q q q q

M



   


  

 
           

 

 (34) 

 

The left side of (35) is equal to zero and the following 

can also be seen from (35): 

 

 
2 2 31

1 0 1 0 1 0 1 1 1 0
q

Cq q q q q q q q q
M

                (35) 

 

By remembering that ε
2
 = ε

3
 = … = ε

n
 = 0, the differential 

equation is simplified to be 

 

 1
1 0 0 0

q
Cq q q

M
     (36) 
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1 1 0 0MCq q Mq q    (37) 

  

Taking derivative of (31) by respect to time: 

  
 

  0
2

cos arctan

1

mCV
q t t MC

MC


 



  



 (38) 

   

Then multiplying (31) by its derivative given in (38) and 

using the trigonometric identity, 

 

  sin 2 2sin cos    (39) 

 

  
  

2 2

0 0 2
sin 2 2arctan

2 1

mC V
q q t MC

MC


 


  


 (40) 

  

By submitting (40) into (37), 

 

 

  
  

1 1

2 2

2
sin 2 2arctan

2 1

m

MCq q

MC V
t MC

MC


 



 

 


       (41) 

  

As q0 is found for (24), the solution of  (41) in the periodic 

steady-state is similarly found as  

 

 

 
    

    

2 2

1
2 2

2 1 1 2

sin 2 2arctan arctan 2

mMC V
q t

MC MC

t MC MC





  



 

  

 (42) 

 

Then, the memristor charge ripple,  q t , can be 

assumed to be equal to the sum of the zero
th

 and the first 

order solutions: 

 

 

 
  

 

    

    

0 1
2

2 2

2 2

sin arctan

1

V sin 2 2arctan arctan 2

2 1 1 2

m q

m

CV t MC K C
q t q q

M
MC

MC t MC MC

MC MC

 


   

 

  
     

 

 


 

 (43)  

By remembering (15), 

 

 
  

 

    

    

2

3 2

2 2

sin arctan

1

V sin 2 2arctan arctan 2

2 1 1 2

m

q m

CV t MC
q t

MC

K C t MC MC
q

MC MC

 



   

 






 
 

 

 (44) 

The filter current or the memristor current is   

 

   
  

 

    

    

2

2 3 2

2 2

cos arctan

1

V cos 2 2arctan arctan 2

1 1 2

m

q m

CV t MC
i t q t

MC

K C t MC MC

MC MC

  



   

 


 



 


 

 (45)  

The capacitor charge is  

 

   
  

 

    

    

2

3 2

2 2

sin arctan

1

V sin 2 2arctan arctan 2

2 1 1 2

m

C

q m

CV t MC
q t q t A

MC

K C t MC MC

MC MC

 



   

 


  



 


 

 (46) 

 

Then, the capacitor voltage is  

 

 

 
    

 

    

    

2

2 2

2 2

sin arctan

1

V sin 2 2arctan arctan 2

2 1 1 2

mC

C

q m

V t MCq t
v t

C
MC

K C t MC MC

MC MC

 



   

 


 



 


 

 (47) 

 

The memristor voltage can be found as 

 

          sinMem i C m Cv t v t v t V t v t     (48) 

 

   
  

 

    

    

2

2 2

2 2

sin arctan
sin

1

V sin 2 2arctan arctan 2

2 1 1 2

m

Mem m

q m

V t MC
v t V t

MC

K C t MC MC

MC MC

 




   

 


 



 


 

 (49) 

 

If the fundamental component is rearranged, (49) 

turns into 

 

 

 
  

 

    

    

2

2 2

2 2

cos arctan

1

V sin 2 2arctan arctan 2

2 1 1 2

m

Mem

q m

CMV t MC
v t

MC

K C t MC MC

MC MC

  



   

 






 


 

 (50) 

 

 

4.2. Gain of the memristor-based low-pass and  

       high-pass filters  

 

In this section, the gain formulas for the memristor-

based LP and HP filters are derived using the results of 

Section 4.1. 

 

4.2.1. Gain of the memristor-based low-pass filter 

 

The output voltage is the capacitor voltage for LP 

filter. As seen from (47), the output voltage has harmonics. 

Due to the harmonics, the gain of the of the LP filter is 

calculated from the fundamentals of the input and output 

signals and is equal to 

  
 

   
10 10

2

1
20log 20log

1

C RMS
LPdB

IN RMS

V
G

V
CM





 
   

     
   
 

 (51)  
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4.2.2. Gain of the memristor-based high-pass filter 

 

The output voltage is the memristor voltage for HP 

filter. Due to the harmonics, the gain of the of the HP filter 

is calculated from the fundamentals of the input and output 

signals and is equal to 

  
 

   

1

10 10
2

20log 20log

1

RMS
HPdB

in RMS

v CM
G

v
CM






 
   

     
   
 

 (52) 

 

4.3. Total harmonic distortion of the memristor- 

       based low-pass and high-pass filters  

 

In this section, the total harmonic distortion (THD) 

formulas for the memristor-based LP and HP filters are 

derived using the results of Section 0. 

 

4.3.1. THD of the memristor-based low-pass filter 

 

The THD of the memristor-based LP filter is given as 

  
 

     

2

2

2 2
1 2 1 1 2

q mRMS
LP

RMS

V K C V
THD

V
CM MC




 

 

 

 (53) 

The frequency at which, THD of the M-C LP filter 

becomes the maximum, can be calculated by taking the 

derivative of THD by respect to ω: 
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The THD is found to be zero at ω = 0 and ω = ∞ rad/s. 

It is maximum at 

 
1

2 2

C

MC


    (55) 

(55) shows an inherent property of all the linear dopant 

drift TiO2 memristor model-based LP filters for small 

signals when the harmonics other than the second 

harmonic is negligible. The high frequency behavior of the 

memristor results in low distortion at high frequencies. 

Also the maximum distortion of the M-C LP filter is 
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As seen from (53) and (56), the total harmonic 

distortion of the Memristor-based LP Filter is zero at zero 

frequency, starts increasing with increasing frequency and 

it has a maximum point occurring at a frequency equal to 

1 √2⁄  times the cut-off frequency and, after this frequency, 

the distortion decreases with increasing frequency and 

disappears at very high frequencies since the memristor 

starts behaving as if a linear time invariant resistor.  

The THD behavior of the memristor-based low-pass 

filter can be explained as that at low frequency the 

capacitive reactance of the filter is dominant and the 

memristor nonlinearity is suppressed, at high frequency 

the capacitive reactance is negligible and also the 

memristor behaves as a resistor, there is a frequency 

region in which filter THD is not negligible and has a 

maximum. For the operation frequencies near  the 

maximum THD frequency, the signal amplitude should be 

kept low for a good performance.  

 

 
4.3.2. THD of the memristor-based high-pass filter 

 

The THD of the memristor-based HP filter is given as 
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(57) is a monotonously decreasing function and the THD 

of the memristor-based HP filter becomes negligible at 

high frequencies. The maximum THD of the memristor-

based HP filter occurs at zero frequency and is equal to 
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Also it can be seen that the maximum THD of the M-C HP 

filter is higher than that of the M-C LP filter: 

 

        3HP HPMAX MAX
THD THD    (59) 

 

 

5. Simulatıons of memristor based low-pass  
    and high-pass filters 
 

In this section, simulations are done to compare the 

results of dynamic and small signal models . For M-C LP 

filter, the output voltage is  the capacitor voltage, vC, and 

for M-C HP filter, the output voltage is the memristor 

voltage, vMem. In this section, M-C LP and HP filters are 

simulated for several frequencies. A sinusoidal input 

voltage of v(t)=Vm×sin(ωt) is applied to the filter. Unless 

otherwise stated all simulations are performed for 

Vm=0.5V, C=200nF, M0=20kΩ, MSAT=100Ω, qSAT=1µC. 

In the general sense, reasonable filter parameters are 

chosen to make ε a small number for the simulations.  

 

5.1. Time domain simulations of memristor based  

        low-pass and high-pass filters 

 

LP and HP filter time domain waveforms are shown 

in Fig. 2 for f=1Hz and f=1 kHz, respectively. The 

simulation results obtained by both of the models match 
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well as shown in Fig. 2 and Fig. 3. As shown in Fig. 2, the 

memristor behavior in the filter is obvious at f=1 Hz: the 

memristor has a zero-crossing hysteresis loop, its 

memristance and charge vary by time, its current is not 

sinusoidal at the steady-state due to its nonlinearity. As 

shown in Fig. 3, at f=1 kHz, the memristor starts behaving 

as a linear time invariant (LTI) resistor, its memristance 

and charge are almost constant, its hysteresis loop 

disappears, its current is almost sinusoidal, and the M-C 

filter behaves similar to a LTI R-C filter. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. M-C LP and HP filters time domain wave forms 

obtained using small signal and dynamic models for 

f=1Hz, qSAT=1µC, q0=0.4×qSAT, (a) input and capacitor 
voltages, (b) memristor charge and memristance (c) 

memristor voltage and memristor current, (d) memristor 

zero-crossing hysteresis loops. vC corresponds  vo  for LP  

 filter and vMem corresponds vo for HP filter, respectively 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Fig. 3. M-C LP and HP filters time domain waveforms 
obtained using small signal and dynamic models for 

f=1kHz, qSAT=1µC, q0=0.4×qSAT, (a) input and capacitor 

voltages, (b) memristor charge and memristance (c) 

memristor voltage and memristor current, (d) memristor 

zero-crossing hysteresis loops.  vC corresponds vo  for LP  
 filter and vMem corresponds vo for HP filter, respectively 
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5.2. Inspection of the gain of the memristor-based  

      low-pass and high-pass filters 
 

Using the formulas obtained in Section 4.2 and the 

dynamic model, gain responses of LP and HP filters are 
demonstrated in Fig. 4 and Fig. 5, respectively. The filter 

gains for both models match very well as shown in Fig. 4 

and Fig. 5. 
 

 

(a) 

 
(b)

 

Fig. 4. M-C LP filter gain characteristics obtained using 

small signal and dynamic models for qSAT=1µC, (a) with 

respect to frequency for three different initial charge (q0) 
values (b) with respect to initial charge for f=10Hz 

 

 
(a) 

 
(b) 

Fig. 5. M-C HP filter gain characteristics obtained using 

small signal and dynamic models for qSAT=1µC, (a) with 

respect to frequency for three different initial charge (q0) 

values (b) with respect to initial charge (q0) for f=1kHz 

5.3. Inspection of the total harmonic distortion of  

       the memristor-based low-pass and high-pass  

       filters 

 

Using the formulas obtained in Section 4.3 and the 

dynamic model, the total harmonic distortions of both LP 

and HP filters are demonstrated in Fig. 6 and Fig. 7, 

respectively. The THDs of the M-C LP and HP filters for 

both models match well as shown in Fig. 6 and Fig. 7. 

 

 
(a) 

 
(b)

 

Fig. 6. M-C LP filter THD characteristics obtained using 

small signal and dynamic models for qSAT=1µC, (a) with 
respect to frequency for q0=0.4×qSAT(b) with respect to 

initial charge for f=10Hz 

 
(a) 

 
(b) 

Fig. 7. M-C HP filter THD characteristics obtained using 

small signal and dynamic models for qSAT=1µC, (a) with 
respect to frequency for qSAT=1µC, (b) with respect to 

initial charge for f=1kHz 
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6. Conclusions 
 

Memristor is a nonlinear element and therefore, 

memristor-based circuits are also nonlinear. Due to this 

non-linearity, many memristor-based applications cannot 

be solved analytically. In this study, using perturbation 

method, small-signal models of both of the TiO2 linear 

drift model memristor-based low-pass and high-pass filters 

are derived for the first time in literature. Their time-

domain responses are obtained and the validity of the 

small-signal models are examined with simulations using 

dynamic models. Simulations have shown that the results 

of perturbation method for memristor based filters are in 

good agreement with that of the numerical simulations. 

The small signal models are able to predict circuit 

waveforms, hysteresis loop of the memristor, and also 

gains of the memristor-based LP and HP filters accurately 

as long as keeping ε a small number. 

As a figure of merit, the total harmonic distortion 

(THD) of both type of filters for small signals are also 

given and the small signal models are also able to calculate 

THD of the filters very accurately. Using the small signal 

models, THD behavior of the memristor-based LP and HP 

filters are also examined in this study. It has been found 

that the THD of the memristor-based LP filter for small 

signals is zero at zero frequency, starts increasing with 

increasing frequency, becomes maximum at a frequency, 

which is equal to 1 √2⁄  times the cut-off frequency, starts 

decreasing after the maximum point, and disappears at 

high frequencies. The THD of the memristor-based HP 

filter is maximum at zero frequency and is a monotonously 

decreasing function. Both THDs of the memristor-based 

LP and HP filters always tend to decrease and becomes 

negligible at high frequencies. 

Memristor is a new nonlinear circuit element; its 

combinations with other circuit elements have not been 

completely understood yet. That’s why the analysis of the 

filter circuits with (a) memristor(s) is very important and 

analysis of them can provide a better understanding of 

their behavior and new design guides so that, in the future, 

when memristor becomes available in market, its potential 

can be fully exploited and memristor-based filter circuits 

with a good-performance can be designed. Based on the 

experience gained in this paper, we also suggest that 

perturbation theory can be used to analyze other 

memristor-based filters or circuits with models other than 

linear drift model. 
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